Electron-conducting quantum-dot solids with ionic charge compensation
نویسندگان
چکیده
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملImpact dynamics of colloidal quantum dot solids.
We use aerosol techniques to investigate the cohesive and granular properties of solids composed of colloidal semiconductor nanocrystals (quantum dot solids). We form spherical agglomerates of nanocrystals with a nebulizer and direct them toward a carbon substrate at low (~0.01 m/s) or high (~100 m/s) velocities. We then study the morphology of the deposit (i.e., the "splat") after impact. By v...
متن کاملHybrid passivated colloidal quantum dot solids.
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulati...
متن کاملElectron teleportation with quantum dot arrays
Teleportation is a spectacular manifestation of quantum mechanics, and altogether an essential element of future information processing1 . It means reconstructing the (unmeasured) quantum state of a given object at a different location, without direct transfer of the object. Bennett et al.2 showed that EPR entanglement3 can be used for teleportation, which was recently experimentally demonstrat...
متن کاملA charge-orbital balance picture of doping in colloidal quantum dot solids.
We present a framework--validated using both modeling and experiment--to predict doping in CQD films. In the ionic semiconductors widely deployed in CQD films, the framework reduces to a simple accounting of the contributions of the oxidation state of each constituent, including both inorganic species and organic ligands. We use density functional theory simulations to confirm that the type of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Faraday Discussions
سال: 2004
ISSN: 1359-6640,1364-5498
DOI: 10.1039/b302839a